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1 Stratified space

1.1 Some topological notions

Definition 1. Let X be a topological space and A be its subspace with
subspace topology. A is called

• locally closed if A is open in its closure;

• locally compact if each point a ∈ A has a relatively compact neighbour-
hood U in A, i.e. a neighbourhood, such that its closure U is compact.

Definition 2. LetX be a topological space and F be a family of subsets ofX.
The family F is called locally finite if any point x ∈ X has a neighbourhood
which intersects finitely many elements of F .

Here are some topological results, which we will use later on.

Proposition 1.1. Let X be locally compact Hausdorff space. Then a subset
A ⊂ X is locally compact if and only if A is locally closed.
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Proof. First, assume that A is a locally compact set and prove that it is
locally closed. For any point a ∈ A there is an open neighbourhood Ua ⊂ A

such that Ua
A is a compact set in X (we denote by U

A closure of U in
A). Since Ua is open in X we can find a set V ⊂ X open in X such that
Ua = A ∩ V .

We state A∩ V ⊆ A. Suppose the statement is proven then A∩ V is the
desired open neighbourhood of a in A and the openness of A in A is proven.

It remains to prove the statment. From the construction of Ua
A we see

that Ua
A

= Ua ∩A = A ∩ V ∩A is compact in X. Since X is Hausdorff Ua
A

is closed in X, therefore A ∩ V ∩ A = A ∩ V ∩ A. The following is true

A ∩ V ⊆ A ∩ V ∩ A,

hence
A ∩ V ⊆ A ∩ V ∩ A = A ∩ V ∩ A.

Since V is open A ∩ V ⊆ A ∩ V . Finally, we combine all together

A ∩ V ⊆ A ∩ V ∩ A ⊆ A

and this completes the proof of the claim.
Second, assume A is locally closed. We want to find for any a ∈ A a

neighbourhood Ua such that Ua is compact.
We know for any point a ∈ A ⊂ X there is a neighbourhood Va ⊂ X of

a, such that Va is compact in X. Set Ua := Va ∩ A. Let Wα with α ∈ Λ,
where Λ is any set of indices, be an open cover of Ua, we want to find a
finite subcover. Since A is open in A, Wα ∩ A is open in A for every α ∈ Λ.
Moreover Wα ∩ A is open cover of Va ∩ A. Now find a finite subcover Wi,
where i ∈ I, and I is some finite subset of Λ, for Va, then Wi ∩A with i ∈ I
is a finite subcover for Va ∩ A.

Corollary 1.2. Let X be a locally compact Hausdorff space. A dense sub-
space D ⊆ X is locally compact if and only if it is open in X.

Remark. If X is Hausdorff and locally compact then any point x ∈ X has
an open neighbourhood U and a neighbourhood V such that V is compact
in U .

1.2 Stratified space

First we will formulate Whitney condition (b) for submanifolds of Rn. Then
we extend the definition to submanifolds of a manifold.
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Definition 3. Let X, Y be smooth submanifolds of Rn. A pair (X, Y ) sat-
isfies Whitney condition b for submanifolds of Rn at a point y ∈ Y if the
following holds. Let xn ∈ X, yn ∈ Y with n ∈ N be some sequences of
points, such that xn 6= yn for all n ∈ N and xn → x ← yn. Consider the
sequence of tangent spaces Tyn and suppose it converges to some r-plane
Tyn → τ ⊂ Rn, where r := dimX, assume also that the sequence of lines
which go through origin and are parallel to the vectors yn−xn

|yn−xn| converges in
progective space Pn−1 to a line l ⊂ Rn; then l ⊂ τ .

Here we state a lemma which will help us reformulate the definition for
submanifolds of arbitrary manifold. Let (X ′, Y ′) be another pair of subman-
ifolds of Rn and y′ ∈ Y ′.

Lemma 1.3. Let U and U ′ be open neighbourhoods of y and y′ correspond-
ingly. Suppose there exist a diffeomorphism φ : U → U ′ such that φ(U∩X) =
U ′ ∩X ′ , φ(U ∩ Y ) = U ′ ∩ Y ′ and φ(y) = y′. Then (X, Y ) satisfies condition
b at y if and only if (X ′, Y ′) satisfies condition b at y′.

Definition 4. Let M be a manifold and X, Y submanifolds and y ∈ Y . A
pair (X, Y ) satisfies Whitney condition b at y if for some coordinate chart
(φ, U) with y ∈ U the pair (φ(U ∩ X), φ(U ∩ Y )) satisfies condition b for
submanifolds of Rn at φ(y).

Note that from Lemma 1.3 follows that if condition b holds in some chart
than it holds in any.

Definition 5. A Whitney stratified space (WSS)W is a subset of a manifold
M , for some µ, satisfying the following:

1) there is a locally finite partition S (W ) (sometimes denoted as S ) of
W into disjoint sets, i.e. W =

⊔
X∈S (W )

X where S (W ) is a locally finite

family of sets;

2) (condition of frontier) for any set X ∈ S (W ) we have

X \X =
⊔

Y ∈S (W ),X∩Y 6=∅,Y 6=X

Y.

We write Y < X if Y is in the frontier of X

3) every set X ∈ S (W ) is an embedded submanifold of Rµ and called a
stratum;
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4) (Whitney condition b) every pair of strata satisfies Whitney condition
b.

Definition 6. Abstract stratified space (ASS) is a triple (W,S ,J ) such that
the following axioms are true

(A1) W is a locally compact Hausdorff space with countable basis of its
topology;

(A2) S is a locally finite partition of W into locally closed sets;

(A3) every strata X ∈ S is a topological manifold with smoothness struc-
ture Cµ;

(A4) (axiom of the frontier) for every X, Y ∈ S , such that X ∩ Y 6= ∅ we
have Y ⊂ X;

(A5) J is a set of triples {(TX), (πX), (ρX)}, where X is a stratum, TX is
an open neighbourhood of X in W , we call TX tubular neighbourhood,
πX : TX → X is a continuous retraction of TX onto X (local retraction),
ρX : TX → [0; +∞) is a continuous function (tubular function) and
ρ−1(0) = X;

(A6) let X, Y be any strata, define a set TXY := TX ∩ Y and maps

πXY := πX |TXY
and ρXY := ρX |TXY

,

then the mapping (πXY , ρXY ) : TXY → X × (0,+∞) is a smooth sub-
mersion;

(A7) let X, Y be any strata then the following is true

πXY πY Z(v) = πXZ(v) (1.1)
ρXY πY Z(v) = ρXZ(v), (1.2)

for v ∈ TXZ ∩ TY Z and πY Z ∈ TXY .

Definition 7. Let (W,S ,J ) and (W ′,S ′,J ′) be two ASS. They are called
equvalent, if the following condition holds:

• W = W ′ and S = S ′ moreover the two smoothness structures on
a stratum X ∈ S = S ′ given by the different stratifications are the
same;
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• if J = {(TX), (πX), (ρX)}, J ′ = {(T ′X), (π′X), (ρ′X)} then for every stra-
tum there exists a neighbourhood T ′′X ⊂ TX ∩ T ′X of X such that

ρX |T ′′
X

= ρ′X |T ′′
X

and πX |T ′′
X

= π′X |T ′′
X
.

Let (W,S ,J ) be an abstract stratified space. We want to construct
new abstract stratified space equivalent to the given one, such that the new
tubular neighbourhoods satisfy some nice axioms. Before we do it we show
that every ASS is metrizable.

Definition 8. A Hausdorff space is called regular, if each point and a closed
set not containing the point have disjoint neighbourhoods.

Definition 9. A Hausdorff space is called normal if each pair of closed dis-
joint sets has disjoint neighbourhoods.

Theorem 1.4. (J. Nagata and Yu.M. Smirnov) [1, Ch. IX] A topological
space is metrizable if and only if it is regular and has a basis that can be
decomposed into an at most countable collection of locally finite families.

Since every locally compact space is regular (Dugundji [1]) every ASS is
regular. Moreover every ASS has a countable basis for its topology, so we
have the immediate corollaries.

Corollary 1.5. Every ASS is metrizable.

Corollary 1.6. Every subset of an ASS is normal.

Lemma 1.7. Every ASS (W,S ,J ) is equivalent to ASS which satisfies the
following axioms. Let X, Y be strata

(B1) if TXY 6= ∅, then X < Y ;

(B2) if TX ∩TY 6= ∅, then X and Y are comparable, i.e. one of the following
holds X < Y, Y < X or X = Y .

Proof. We will construct the new control data J ′ for (W,S ,J ) such that
if two strata are not comparable, then T ′X ∩ TY = ∅. Suppouse we found
such system of tubular neighbourhoods. If T ′X ∩ T ′Y 6= ∅, then X and Y are
comparable(A11). The first axiom (A10) will follow from the construction of
the tubular neighbourhoods.

We proceed by induction on number of strata.
In case there is only one stratum, there is nothing to prove. Assume we

can construct the desired control data for the stratified space with k strata.
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Let now (W,S ,J ) be ASS with k + 1 strata. Let X ∈ S and consider
Y := ∪Y ∈S ,Y ∩X=∅,X∩Y=∅Y . Y is a stratified space and the number of strata
is less or equal k, by assumption there is a control data, which is satisfied
the axioms. Denote it (T ′Y ).

SetWX := W \∂X. Note thatWX is open inW and X ⊂ WX ,Y ⊂ WX .
Moreover

Y :=
⋃

Y ∈S ,Y ∩X=∅,X∩Y=∅

Y =
⋃

Y ∈S ,Y ∩X=∅,X∩Y=∅

Y

is closed in WX .
X ∩WX = (X ∪ δX) ∩WX = X

so X is also closed is WX .
Any subset of ASS is normal by the Corollary 1.6. From normality ofWX

follows that there are two open disjoint sets UX and UY such that X ⊂ UX
and Y ⊂ UY . Set T ′′X := TX ∩ UX and T ′′Y = T ′Y for Y ∈ Y . Denote
π′′ = π|T ′′

X
and ρ′′ = ρ|T ′′

X
for all strata X ∈ S .

1.3 Controlled vector fields

Definition 10. Let (W,S ,J )) be a stratified space. A stratified vector field
is a set {ηX— smooth vector field onX : X ∈ S }.

Definition 11. A stratified vector field η onW is controlled by J if it satisfies
the following controlled conditions: for any strata X, Y , where X > Y , there
exists a neighbourhood T ′Y of Y in TY such that for each v ∈ T ′Y ∩ X, we
have

(ηXρY X)(v) = 0, (1.3)

(πY X)∗ηX(v) = ηY (πY X(v)). (1.4)

Definition 12. Let P be a smooth manifold and f : V → P a continuous
mapping. f is a controlled submersion if the following conditions are satisfied
for any stratum X

• f |X : X → P is a smooth submersion;

• there is a neighbourhood T ′X of X in TX such that f(v) = f(πX(v)) for
any v ∈ T ′X .

Proposition 1.8. If f : V → P is a controlled submersion, then for any
smooth vector field on P , there is a controlled vector field η on V such that
f∗η(v) = ζ(f(v)) for all v ∈ V .
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Proof. By induction on the dimension of V .
If dimV = 0 the statement of the proposition is trivial.
Assume that the statement is true for any stratified space with dimension

dimV ≤ k. Let now V be a stratifiad space and dimV = k + 1.
Consider k-skeleton of V

Vk :=
⊔

Y ∈S ,dimY≤k

Y.

It can be easily seen that k-skeleton is a stratified space of dimension k, hence
by inducton assumptoin there is a controlled vector field ηk on Vk such that

f∗ηk(v) = ζ(f(v)) for anyv ∈ Vk.

We will show in two steps that there is a vector field η on V such that it is
an extension of ηk, i.e. η|Vk = ηk|Vk , and f∗η(v) = ζ(f(v)) for any v ∈ V .

1st Step. Fix a top stratum X, that is a startum with dimX = k + 1.
Define

YX :=
⊔

Y ∈S ,Y <X

Y,

clearly, for every Y ∈ YX we have dimY < dimX = k + 1, hence YX ⊂ Vk.
In the first step we will construct suitable control data for YX .

By induction assumption ηk is controlled, so for any Y ∈ YX there is a
neighbourhood T 1

Y of Y in TY such that for any starta Z, where Z > Y , the
control conditions are satisfied

(ηZρY Z)(v) = 0,

(πY Z)∗ηZ(v) = ηY (πY Z(v))

for any v ∈ T 1
Y ∩ Z. Since f is controlled there is a neighbourhood T 2

Y of Y
in TY such that

f(v) = fπY (v), for all v ∈ T 2
Y .

Set T ′Y := T 1
Y ∩ T 2

Y for all Y ∈ Vk.
Choose a neighbourhood T 3

Y of Y in T ′Y such that for any strata Z, where
Z ∈ Vk and Y < Z,

πZ(T 3
Y ∩ T 3

Z) ⊆ T ′Y . (1.5)

By the axiom (A11) there are tubular neighbourhoods (T 4
Y ) for Y ∈ Vk suth

that if Y anf Z are not comparable, then T 4
Y ∩ T 4

Z = ∅.
Set T ′′Y := T 3

Y ∩ T 4
Y for all Y ∈ Vk.
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We claim that there is a stratified vector field ηX on X satisfying the
control conditions and the assertion of the proposition, namely

(ηXρY X)(v) = 0, for all v ∈ T ′′Y ∩X, (1.6)

(πY X)∗ηX(v) = ηY (πY X(v)), for all v ∈ T ′′Y ∩X, (1.7)

f∗ηX(v) = ζ(f(v)), for all v ∈ X. (1.8)

To prove this claim will clearly be enough to prove the proposition.
For a point v ∈ X define a set Sv := {Y : Y < X, v ∈ T ′′Y }. By the

construction of (T ′′Y ), if Y and Z are not comparable, then T ′′Y ∩ T ′′Z = ∅.
Hence Sv is totally ordered set. If the Sv is not empty, then there is the
maximal stratum Yv, that is Yv > Y for any Y ∈ Sv.

Suppouse Sv is not empty and (1.6), (1.7) holds at v. Then (1.6), (1.7)
holds for all Y ∈ Sv. If Y < Yv by the choice of T ′′Y we have πYv ∈ T ′Y (see
(1.5)). Then

ηXρY X(v) = ηXρY YvπYvX(v) = (πYvX)∗ηX(v)ρY Yv
(1.7)
= ηYv(πYvX(v))ρY Yv

(1.6)
= 0

and

(πYvY )∗ηX(v)
(A9)
= (πY Yv)∗(πYvX)∗η(v)

(1.7)
= (πY Yv)∗ηYv(πYvX(v))

(1.7)
= ηY (πY YvπYvX(v))

(A9)
= ηY (πYvx(v)).

Thus (1.6), (1.7) holds at v for all Y ∈ Sv. Furthermore

f∗ηX(v) = (f ◦ πYvX)∗ηX(v)
(1.7)
= f∗ηYv(πYvX(v))

(1.8)
= ζ(f(v)).

Thus 1.8 holds at v.
This shows that to construct ηX satisfying (1.6), (1.7), (1.8) for all Y < X,

it is enough to construct ηX satisfying (1.6) and (1.7) for Yv at v for all v ∈ X
for which Sv is nonempty, and satisfying (1.8) at v for all v ∈ X for which
Sv is empty. Clearly, we can construct a vector field ηX in a neighbourhood
of each point v in X satisfying the appropriated conditions (1.6) and (1.7) or
(1.8). Since the set of vectors satisfying the appropriated conditions in TXv

in convex, we may construct ηX globally by means of a partition of unity.
2nd Step. Before now we considered only one top stratum. The desired

controlled vector field was constructed for this stratum. Since the condition
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that a vector field be controlled involves only strata, which are comparable
and not equal, we may use the above method to construct the controlled
vector fields for each top strata separately.

Proposition 1.9. Let X be a stratum of an abstract stratified space W and
ε be a smooth positive function on it, i.e. ε ∈ C∞(X,R>). Then T εX = {v ∈
TX : ρX(v) < ε(πX(v))} form a neighbourhood basis of X in TX .

Proof. We will proof the proposition by contradiction. Assume T εX do not
form a neighbourhood basis. Then there is a point v ∈ X, such that T εX do
not form a neighbourhood basis of the point.

Since W is locally compact we can find a neighbourhood Uv of v with
compact closure. Consider T εv := Uv ∩ T εX . From the assumption follows
that there is an open neighbourhood V of v such that a set T εnv \ V is not
empty for infinitely many functions εn, where n ∈ N. Take a sequence of
points yn ∈ T εnv \ V . Every point of it lies in compact set Uv, consequently
there is a converging subsequence {ynk

} with limit y ∈ TX , where nk ∈ N.
We know from construction of T εX that πX(y) = limn→∞ πX(ynk

) = v and
ρX(y) = limn→∞ ρX(ynk

)=0. Hence y = v. But we assumed that in the
neighbourhood V of x there is no points form {yn}. The contradiction proves
the proposition.

Proposition 1.10. Let Xε := {(x, t) : x ∈ X, 0 ≤ t ≤ ε}. In the notations
of the previous proposition there is a smooth function ε, such that a map
σεX := (πεX , ρ

ε
X) : T εX → Xε is proper.

Proof. Let Kε be a compact set in Xε it can be written in the following form
Kε := K × k, where K ⊂ X is compact and k ⊂ [0, ε] is compact. Since
V is locally compact we can choose locally finite covering of K by sets Vα
with compact closure. Moreover we can choose finite subcover by Vi, where
0 < i < k and i, k ∈ N. The set π−1X (K) ∩ ρ−1X (k) is closed because the map
(πX , ρX) is continuous. Now take ε such that π−1X (K) ∩ ρ−1X (k) ⊂ ∪Vi with
0 < i < k. The union of finitely many compact sets Vi is compact. So we
have that π−1X (K) ∩ ρ−1X (k) is closed and is a subset of compact set, hense it
is compact.

1.4 Local one-parameter group

Let V be a locally compact space.

Definition 13. A local one-parameter group on V is a pair (J, α), where J
is an open subset of R×V and α : J → V is a continuous mapping such that
the following conditions are satisfied
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(a) 0× V ⊆ J and α(0, v) = v for all v ∈ V ;

(b) if v ∈ V , then the set Jv := J ∩ (R×v) ⊆ R is an open interval (av, bv),
possibly infinite at one or both ends;

(c) if v ∈ V and s, t+s ∈ (av, bv) and t ∈ (aα(s,v), bα(s,v)), then α(t+s, v) =
α(t, α(s, v));

(d) for any v ∈ V and any compact set K ⊆ V , there exists ε > 0 such
that α(t, v) does not lie inside K if t ∈ (av, av + ε) ∪ (bv − ε, bv).

Proposition 1.11. Every controlled vector field on V generates a unique
local one parameter group (J, α).

Proof. From the definition of stratified vector field we know that the re-
striction ηX of η to X is a smooth vector field on X. Applying a result
from differential geometry we see that ηX generates a unique smooth local
one-parameter group (JX , αX) of diffeomorphisms of X. Set

J =
⋃
X∈S

JX ,

α =
⋃
X∈S

αX .

A pair (J, α) is a local one-parameter group generated by η. We see that
(a), (b) and (c) in the definition of local one-parameter group hold, and if
(J, α) is a local one-parameter group then it is generated by η. Since each
pair (JX , αX) is unique, (J, α) is unique. We need to proof condition (d) and
that J is open, α is continuous.

Proof the condition (d).
We proof by contradiction. Assume that (d) does not hold. Then there

exists v ∈ V and a compact set K ⊂ V , such that α(t, v) ∈ K for values of
t arbitrary close to av or bv. Consider the case where α(t, v) ∈ K for values
arbitrary close to bv, the other case is analogous.

Choose a sequence {ti}i∈N that converges to bv from below such that
x = limα(ti, v) ∈ K. Let X, Y denote two stratum such that x ∈ X and
v ∈ Y . Since x is a limit point of points from Y we conclude that X ⊂ Y .
Suppose X = Y .

x = limα(ti, v) = α(bv, v) = αY (bv, v) ∈ Y,

hence bv ∈ JY ∩ (R × v), but this contradicts with the definition of number
bv, i.e. with the fact JY ∩ (R× v)) = (av, bv). We conclude that X < Y .
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Since x ∈ X is a limit point of sequence α(ti, v) we can choose a number
N ∈ N such that all points α(tn, v) for n > N lie an a tubular neighbourhood
of X, i.e. α(tn, v) ∈ TX and ρXY (α(tn, v)), πXY (α(tn, v)) are defined. Also
the control conditions hold

(ηY ρXY )(α(tn, v)) = 0;

(πXY )∗ηY (α(tn, v)) = ηX(πXY (α(tn, v))).

Set xn := πXY (α(tn, v)) and note that xn ∈ X. By taking n large enough
choose ε > bv − tn such that [0, ε] ⊆ Jxn = JX ∩ (R × xn). We can do so
because by the definition of local one-parameter group of diffeomorphisms of
X, 0×X ⊆ JX and JX ∩ (R× z) is open for any z ∈ X.

Since ρXY is a continuous function, ρXY (x) = 0 and lim
n→∞

α(tn, v) = x we
see lim

n→∞
ρXY (α(tn, v)) = 0. Hence for some positive number εX the inequality

ρXY (α(tn, v)) < εX holds on α([0, ε], xn), and control conditions are satisfied
for the following set

M[0,ε] := {m ∈ Y : ρXY (m) = ρXY (α(tn, v)) and πXY (m) = α([0, ε], xn)}.

Set M is compact, because ρXY (α(tn, v)) < εX on α([0, ε], xn), the sets
α(tn, v) and α([0, ε], xn) are compact and the map (πXY , ρXY ) is proper by
Proposition 1.10 on T εXX . From control conditions follows that the curves,
along which function ρXY is constant, are tangent to vector filed η. Also we
kmow that d

dt
αY (t, v) = ηY (αY (t, v)) so we conclude that for any s ∈ [0, ε]

points α(tn + s, v) lie in the following set

Ms := {m ∈ Y : ρXY (m) = ρXY (α(tn, v)) and πXY (m) = α(s, xn)}.

Since bv > ε + ti we extended the domain (av, bv). It is a contradiction to
the assumption that α(ti, v) converges to x as i tends to infinity. We proved
condition (d).

Proof of openness of J and continuity of α.
Choose arbitrary point (t, v) ∈ J and suppose t ∈ [0,∞), in other cases

proof is analogous. We find an open neighbourhood of (t, v) such that it lie
in J and then prove that α is continuous.

Let X be the stratum where v lies. Since X is locally compact there is
a neighbourhood U of v such that U is compact. By the definition of local
parameter group we find a small positive number ε such that [−ε, t + ε] ×
U ⊆ J . For any stratum local parameter group on it is continuous, hence
αX([−ε, t+ ε]× U) is compact.

Define a set

Σ := {y ∈ TX : ρX(y) ≤ ε1 and πX(y) ∈ αX([−ε, t+ ε]× U)}
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. By the Proposition 1.10 we can choose ε1 such that the map (πX , ρX) is
proper on T ε1X , hence Σ is compact.

Let Y be a stratum which contains y ∈ Σ. Controll conditions hold for
y ∈ Σ (we may choose smaller ε1 if it is needed). Note that the following set

Σ0 := {y ∈ Ty : ρX(y) < ε1 and πX(y) ∈ U} ⊂ Σ

is a neighbourhood of v in V . From control conditions follows that the
function ρX remains constant along the path α(t, y) for any y ∈ Σ, i.e.

ρX(α(s, y)) = ρX(y),

and the projection πX commute with α(s, y) in the following sense

πX(α(s, y)) = α(s, πX(y)).

for all s ∈ Jy such that α(s1, y) ∈ Σ for 0 ≤ s1 < s. From these facts and
(d), it follows that (−ε, t + ε) × Σ0 ⊆ J . Thus J contains a neighbourhood
of (t, v).

We have shown that if (t′, y) ∈ (t − ε, t + ε) × Σ0, then y′ := α(t′, y) ∈
TX , ρ(y′) ≤ ε1 and πX(y′) = α(t′, πX(y)). Hence, for an arbitrary small
neighbourhood of α(t, v) we may choose ε > 0 and a neighbourhood Σ1.
Consecuently, α is continuous at (t, v).

Corollary 1.12. (J.Mather [2]) Let P be a manifold and f : V → P be a
proper, controlled submersion. Then f is locally trivial fibration.

Definition 14. A topological space is called locally path-connected if for
any point x and an open neighbourhood Ux there is an open neighbourhood
Vx ⊂ Ux, which is path-connected in a subspace topology.

Proposition 1.13. Every compact stratified space is locally path connected.

Proof. Let x ∈ W be any point. We want to find a path connected neigh-
bourhood. Let X be a stratum such that x ∈ X and Ux be a compact
path connected neighbourhood of x in W . We can finde such neighbourhood
because X is a topological manifold, hence locally path connected. Define

A := TX ∩ π−1X (Ux)

Since W is compact and TX is closed, TX is compact. Moreover π−1X (Ux)
is compact. Set A is compact as an intersection of two compact sets.

Assume now that A is not path connected, i.e. there is a point y ∈ A
sich that it cannot be connected with x by a path. Denote by Ay ⊂ A path
connected component for y.
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By construction Ay ∩ Ux = ∅. Define

d := inf{ρX(y) : y ∈ Ay}.

Since A is compact and Ay is closed in A, Ay is compact. Hence there is a
sequence of points yn ∈ Ay, n ∈ N with ρ(yn) → d as n → ∞ and a point
ỹ ∈ Ay such that ρ(ỹ) = d.

Let Y be a stratum y ∈ Y and Y > X. By the axion (A6) from the
defenition of a abstract stratified set (πXY , ρXY ) : TX ∩ Y → X × (0; +∞) is
a smooth submersion than there is a point y′ ∈ Y ∩ Ay with ρ(y′) < d and
πX(y′) = πX(ỹ). this contradicts with assumotion that d is infimum.

Now we will construct a path explicitly. Let y be a point from the neigh-
bourhood Y ∩ Ṫ εXX of x and let construct a path between the points x and y.
We now that

ρX : Y ∩ Ṫ εXX → (0, εX) is a submersion.

Moreover π−1(y) = x ∈ Ux. From the Corollary 1.12 follows that π−1X ∩ Ṫ
εx
X u

(0, εx)× Ux × LX , where LX := π−1X (x) ∩ ρ−1X (ε) is a fiber over 0.

ρX(y) = ρ ∈ (0, εx)

Set
c(t) := (tρ, x, l), wheret ∈ (0, 1).

and put c(0) := y.

2 Simplicial complexes

2.1 Defenitions and examples

Definition 15. A simplicial complex K consists of a set v of verticies a set
s of finite nonempty subsets of v called simplicies such that

• any vertex is a simplex;

• any nonempty subset of a simplex is a simplex.

Definition 16. A simplex s containing exactly q + 1 verticies is called q-
simplex, we write dim(s) = q.

Definition 17. If s′ ⊂ s, s′ is called a face of s (if s′ 6= s proper face).
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Remark. The simplicies of K are partially ordered by the face relation (s′ ≤ s
if s′ is a face of s).

Example 2.1. Let A be any set then the set of all finite nonempty subsets
of A is a simplicial complex.

Example 2.2. Let s be a simplex of a simplicial complex K, the set of all
proper faces of s is a simplicial complex denoted by ṡ.

Example 2.3. Let K be a simplicial complex. A set Kq = {s ⊂ K| dim s ≤
q} is called a q-skeleton of K

2.2 Realization of a simplicial complex in Rn

Given a nonempty simplicial complex K, let |K| be set of all functions
α : {v} → I such that

a) for each α set {v ∈ K : λ(v) 6= 0} is a simplex of K;

b) for each α
∑

v∈K α(v) = 1.

If K = ∅ we define |K| = ∅.

Definition 18. The real number α(v) is called th vth barycentric coordinate
of α.

d(α, β) :=

√∑
v∈K

(α(v)− β(v))2

defines a metric on |K| and the topology on |K| defined by this metric is called
the metric topology. We denote be |K|d set |K| with the metric toplogy.

Definition 19. For a simplex s ∈ K the closed simplex |s| is defined by

|s| := {α ∈ |K| : α(v) 6= 0 => v ∈ s}.

Note that if s is a q-simplex, then |s| is in one-to-one correspondence with
the following set

{x ∈ Rq+1 : 0 ≤ xi ≤ 1,

q∑
i=0

xi = 1}.

The metric topology on |K|d induces on |s| a topology and the topological
space |s|d is homeomorphic to {x ∈ Rq+1 : 0 ≤ xi ≤ 1,

∑q
i=0 xi = 1}. If s1, s2
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are two simplicies then s1∩ s2 is either empty set, then also |s1| ∩ |s2| = ∅, or
a face of both s1 and s2, then |s1∩ s2| = |s1| ∩ |s2|. Hence the set |s1| ∩ |s2| is
closed in both sets |s1|d and |s2|d. The topologies induced on |s1| ∩ |s2| from
|s1|d and from |s2|d are equal. So there is a toplogy on |K| coherent with
{|s|d : s ∈ K}, we will call it weak topology. |K| will denote the space with
weak topology.

Definition 20. For a simplex s ∈ K the open simplex is defined by

< s >:= {α ∈ |K| : α(v) 6= 0 <=> v ∈ s}.

Since < s >= |s| \ |ṡ|, < s > is an open subset of |s|, but it should not
be open in |K|.

Proposition 2.4. A finite simplicial complex is a WSS.

Proof. Let K be a finite simplicial complex with n number of its verticies
and let |K| be its realization in Rµ. Open simplicies constitute a partition of
|K|. Indeed, every point α ∈ K belongs to a unique open simplex, namely
the open simplex < s >, where s = {v ∈ K : α(v) 6= 0}. We will show that
|K| satisfy properties 1)− 4) of WSS.

1) Number of open simplicies of |K| is equal to 2n, so we have finite
partition of simplicial complex into disjoint open simplicies.

2) We know that |s| \ < s > = |ṡ|, where s is any simplex of K, |s| is a
closed simplex in |K|, < s > is open simplex in |K|, ṡ is a set of al proper
faces of s. This equality gives us precisely the condition of frontirer for |K|.

3) By the definition of realization of K every simplex s is an embedded
submanifold of Rµ.

4) To show Whitney condition b take two open simplecies s1, s2 and
siquences of points xn ∈ s1, yn ∈ s2 such that xn → x ← yn. Tangent
space Tyn is the same for all points yn, so Tyn = τ for all n ∈ N. Vectors
xn−yn
|xn−yn| lie in space τ , which is Euclidian space, so the limit of the vectors also
lies in τ .
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